Therefore, the larger decay rate fluctuation is attributed to the

Therefore, the larger decay rate fluctuation is attributed to the fluctuations in the surface-plasmon excitation rate. Figure 5 Decay rate distributions SBI-0206965 order of nc-Si-SiO x structures with and without Au 5 nm layer. Other model used

for the statistical analysis of the time-resolved emission from the assembly of semiconductor quantum dots was proposed by van Driel et al. [21], which takes into consideration the log-normal distribution of decay rates. This model was used under studies of spontaneous emission decay rate, an assembly of Si nanocrystals in porous silicon (PSi) near semicontinuous gold films [22]. For the Au/PSi samples, the log-normal model gave a good fit with the experimental dates. It has been shown that PL decay rates also strongly modified

upon deposition of a thin Au film. The decay rate fluctuation in Au/PSi samples was related to the fluctuations in the LDOS. Conclusions We investigated the photoluminescence spectra of the silicon Ferrostatin-1 molecular weight nanoparticles, embedded into porous SiO x matrix, coated by Au-nanoisland layer. It has been shown that the spontaneous emission decay rate of the excited ncs-Si in the sample coated by Au nanoislands was accelerated. Close peak positions of the nc-Si emission and absorption of Au PF01367338 nanoparticles indicate that excitons generated in ncs-Si could effectively couple to the local surface plasmons excited at the surface of Au nanoparticles and increase the radiative recombination rate. We studied also the wavelength dependence of the PL decay rates in the samples with and without Au layer. The emission decay rate distribution was determined by fitting of the experimental over decay curves within frameworks of the stretched exponential model. It was supposed that for the Au-coated nc-Si-SiO x samples, the larger width in the decay rate distribution might be attributed to the fluctuations in the surface-plasmon excitation rate due to the uncertainty in the metal-emitter distance. Acknowledgements Authors are grateful to Dr. O.S. Litvin for the

AFM measurements and V. Litvin for the optical measurements. References 1. Barnes WL: Fluorescence near interfaces: the role of photonic mode. J Mod Opt Mod Phys 1998, 45:661–699.CrossRef 2. Ford GW, Weber WH: Electromagnetic interactions of molecules with metal surfaces. Phys Rep 1984, 113:195–287.CrossRef 3. Kim BH, Cho CH, Mun JS, Kwon MK, Park TY, Kim JS, Byeon CC, Lee J, Park SJ: Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons. Adv Mater 2008, 20:3100–3103.CrossRef 4. Garoff S, Weitz DA, Gersten JI: Electrodynamics at rough metal surfaces: photochemistry and luminescence of absorbates near metal island films. J Chem Phys 1984, 81:5189–5200.CrossRef 5. Wang Y, Yang T, Tuominen MT, Acherman M: Radiative rate enhancement in ensembles of hybrid metal–semiconductor nanostructures. Phys Rev 2009, 102:163001. 6.

, CP 04510 Mexico;

, CP 04510. Mexico; PF-6463922 2Institut Cavanilles de Biodiversitat i Biologia Evolutiva de la Universitat de Valencia. Apartat Postal 22085, Valencia. CP 46071. España; 3Área Académica de Biología del Instituto de Ciencias Básicas e Ingeniería. Universidad Autónoma del Estado de buy GS-9973 Hidalgo. Apartado Postal 1-69 Plaza Juárez, Pachuca de Soto, Hidalgo. CP 42001. Mexico The hardening of the cell theory during the second half of the 19th century encountered strong resistance by those that considered viruses and hypothetical organisms smaller than cells, on the one hand, and by those that

were convinced that the basic traits of life were found not in complete cells but only within protoplasm, on the other. Spanish-speaking scientists were not an exception, and some of the most distinguished members in academia became engaged in this debate. It was the case of the distinguished

Spanish histologist Santiago Ramón y Cajal, who proposed the existence of hypothetical living metastructures within nucleated cells, as part of a more comprehensive “cytocolonial theory” (Ramón y Cajal, 1989). His ideas were not accepted in his country nor in Latin America due to scientific prejudices and the prevalence of the hardened version of cell theory, and in other international academic circles probably because of language barriers. Eventually, however, as he matured Ramón y Cajal abandoned his initially enthusiastic critique of the cell theory and, by his discoveries, became one of its more important supporters (López-Piñero, 2006). López-Piñero, GF120918 JM (2006)

Santiago Ramón y Cajal. Colección Biografías. Publicacions de la Universitat de Valencia and Editorial de la Universidad de Granada, Valencia. Ramón y Cajal S (1989) Recollections of my life. MIT Press, Cambridge. E-mail: ulisesi@uaeh.​edu.​mx Linear Temporality: A Cultural Perspective of the Origin of Life Ninel Valderrama-Negrn1, Sandra Ramos-Amzquita2, Sergio Ramos-Bernal3, Alicia Negron-Mendoza3 1Facultad de Filosofa y Letras; 2Facultad de Ciencias Polticas; 3Instituto de Ciencias Nucleares, Universidad Nacional Autnoma many de Mexico (UNAM) Mexico, D.F. Mexico The Aristotelian paradigm of time plays an important role in Western Modernity (1453–1789), in science and in the way that Western civilization perceives the origin of life. The aim of the present paper is to analyze the philosophical basis for the origin of life in Western Modernity. Our argument takes as its point of departure the idea that the Aristotelian paradigm of linear temporality influences all aspects of life, including science, even after the outcome of the scientific method. This paradigm implies a conception of time that has as main characteristics a beginning and an end, forming the idea of linear temporality. This point of view is based on the perception of human life as finite. In addition, this temporality serves as a framework in Western thinking, which is different from that of other cultures.