However, in cell lines of neuronal lineage only a threefold reduc

However, in cell lines of neuronal lineage only a threefold reduction in viral transcript PFTα chemical structure and protein levels was observed, despite the same 10(4)-fold reduction in released infectious virions, suggesting an assembly defect. Examination of VSV matrix (M) protein ubiquitination yielded no differences between mock-and IFN-beta-treated neuronal cells. Further analysis of potential post-translational modification events, by scintillation and two-dimensional electrophoretic methods, revealed IFN-beta-induced alterations in M protein and phosphoprotein (P) phosphorylation. Hypophosphorylated P protein was demonstrated by reduced (32)P counts, normalized by

(35)S-cysteine/methionine incorporation, and by a shift in isoelectric focusing. Hypophosphorylation of VSV P protein was found to occur in neuronal

cell lysates, but not within budded virions from the same IFN-beta-treated cells. In contrast, hyperphosphorylation of VSV M protein was observed in both cell lysates and viral particles from IFN-beta-treated neuronal cells. Hyperphosphorylated M protein was demonstrated by increased (32)P counts relative to (35)S-cysteine/methionine normalization, and by altered isoelectric focusing in protein populations from cell and viral lysates. Hyperphosphorylated VSV M protein was found to inhibit its association with VSV nucleocapsid, suggesting a possible mechanism for type Selisistat mouse I IFN-mediated misassembly through disruption of the interactions between ribonucleoprotein cores, and hyperphosphorylated M protein bound to the plasma membrane inner leaflet.”
“Phytic acid (PA, myo-inositol 1,2,3,4,5,6-hexakisphosphate) is important to the nutritional quality of cereal and legume seeds. PA and its salts with

micronutrient cations, such as iron and zinc, cannot be digested by humans and non-ruminant animals, and hence may affect food/feed nutritional value and cause P pollution of groundwater from animal waste. We previously developed a set of low phytic acid (LPA) rice mutant lines with the aim MEK inhibitor of increasing the nutritional quality of rice. Two of these lines, Os-lpa-XS110-2 (homozygous non-lethal) Os-lpa-XS110-3 (homozygous lethal), contain two mutant alleles of a LPA gene (hereafter XS-lpa2-1 and XS-lpa2-2, respectively). In this study, we mapped the XS-lpa2-1 gene to a region on chromosome 3 between microsatellite markers RM14360 and RM1332, where the rice orthologue (OsMRP5) of the maize lpa1 gene is located. Sequence analysis of the OsMRP5 gene revealed a single base pair change (C/G-T/A transition) in the sixth exon of XS-lpa2-1 and a 5-bp deletion in the first exon of XS-lpa2-2. OsMRP5 is expressed in both vegetative tissues and developing seeds, and the two mutations do not change the level of RNA transcription.

Comments are closed.