The whole obtained reaction product was purified by dialysis usin

The whole obtained reaction product was purified by dialysis using a Spectra/Por MK-8931 purchase 3 dialysis membrane (Spectrum Laboratories Inc., Rancho Dominguez, CA, USA). Chemically exfoliated bulk h-BN The method of producing

chemically exfoliated h-BN is based upon the preparation of graphene oxide [36]. In a typical experiment, 0.75 g of h-BN bulk powder was dispersed in 60 ml of 96% H2SO4. Subsequently, 3 g of KMnO4 was added, and the reaction mixture was stirred under heating at 40°C continuously for 6 h. The obtained pink suspension was subsequently poured onto ice and mixed with 200 ml of 30% H2O2. The pink squash quickly changed to a white suspension, which was washed by decantation and centrifugation until it reached a pH ∼ 7.0. Characterization methods Diffraction

patterns were collected using a PANalytical X’Pert PRO diffractometer (Almelo, The Netherlands) equipped with a conventional X-ray tube (CuKα 40 kV, 30 mA, line focus) in the transmission mode. An elliptic focusing mirror with a divergence slit of 0.5°, an anti-scatter slit of 0.5°, and a Soller slit of 0.02 rad were used in the primary beam. A MLN2238 fast linear position-sensitive detector PIXcel with an anti-scatter shield and a Soller slit of 0.02 rad were used in the diffracted beam. All patterns were collected with steps of 0.013° and 500 s/step. A qualitative analysis was BI 2536 clinical trial performed with the DiffracPlus Eva software package (Bruker AXS, Berlin, Germany) using the JCPDS PDF-2 database [37]. A water suspension of the sample material was placed onto a sample holder for transmission experiments and then covered with a Mylar foil (6 μm thick, DuPont Tejjin Films, Chester, VA, USA). Then, the second Mylar foil covers the sample to avoid losses. Finally, the sample holder was completed with a sample holder

ring, making it ready for X-ray diffraction (XRD) experiments in transmission mode. The crystallite size, interlayer spacing, and number of h-BN and h-BCN layers were calculated by using the classical Debye-Scherrer equations [38, 39]. Atomic force microscopy (AFM) images were obtained using a Bruker Dimension FastScan microscope. The samples for AFM measurement Thalidomide were prepared through the spin coating method. The samples were prepared by pipetting the exfoliated h-BN and h-BCN water suspensions onto the synthetic mica as an atomically smooth support and then were spin-coated at 6,000 rpm for 1 min. A silicon tip on a nitride lever was used with ScanAsyst (Bruker) in the air contact mode for resonance frequencies ranging from 50 to 90 kHz. The morphology of the sample powders was inspected by transmission electron microscopy (TEM), and the crystal structure was analyzed by electron diffraction (ED) using a 300-kV JEOL 3010 (Akishima-shi, Japan).

Comments are closed.