The infection activity of ϕSpn_200 was tested on the pneumococcal strain Rx1 [59]. Results obtained demonstrated that ϕSpn_200 induced the formation of lysis plaques click here on the Rx1 culture plates (Additional file 5). Conclusions The number of sequences of bacterial genomes has been rapidly increasing in the last years thanks to the use of new technologies, such as the high-throughput Roche 454 pyrosequencing [60, 61]. S. pneumoniae serotype 11A is
becoming an emergent serotype in the post-PCV7 era and data concerning its genetic characteristics can be of importance for future vaccines. The reasons determining the increase in the incidence of pneumococcal infections due to non vaccine-serotypes, including serotype 11A, are complex and not yet fully understood. Multiple factors could take part in this phenomenon, such as geographical and temporal trends, the prevalence of these serotypes in the community, the ability to evade host defenses, the acquisition of new genetic material that could potentially increase their invasive capacity or their resistance to antibiotics [62]. In this study, the entire genomic sequence
of S. pneumoniae AP200, belonging to serotype 11A and ST62, has been obtained. EGFR phosphorylation Sequence analysis revealed chromosomal rearrangements and horizontal gene transfers. A large chromosomal inversion across the replication axis was found: it is likely that this inversion
originated to maintain the genome stability affected by horizontal gene transfer events, as suggested by Ding et al. [28]. The presence of large genomic inversions is a phenomenon observed in other streptococcal species, where it could contribute to generate chromosomal shuffling and create novel genetic pools [63–65]. Horizontal gene transfer events involved mainly two mobile elements, the erm(TR)-carrying genetic GSK2126458 molecular weight element Tn1806 and the functional prophage ϕSpn_200. The modular organization recognized inside the two exogenous elements, and their similarity to other elements of different bacterial species, confirm that they have undergone frequent DNA exchanging events, that appear to be the major contributors to the overall diversity of the genome of S. pneumoniae AP200. Although the availability of complete pneumococcal Olopatadine genomes cannot provide a full explanation for the evolution and spread of a particular serotype or clone, it can contribute information on the pathogenic potential of this important microorganism. Regarding AP200, the presence of pilus islet 2 could confer a selective fitness advantage, mediating adherence to the nasopharingeal epithelium and could represent a target for future vaccines [24, 38]. In addition, the presence of the transposon Tn1806, conferring erythromycin-resistance, is an advantage to the microorganism in view of the large use of macrolides in the community.