“
“Machado-Joseph disease (MJD) is a late-onset neurodegenerative disorder caused by a polyglutamine (polyQ) expansion in the ataxin-3 protein. We generated two transgenic mouse lineages expressing the expanded human ataxin-3 under the control of the CMV promoter: CMVMJD83 and CMVMJD94, carrying Q83 and Q94 stretches, respectively. Behavioral analysis revealed that the
CMVMJD94 transgenic mice developed motor uncoordination, intergenerational instability of the CAG repeat and a tissue-specific increase in the somatic mosaicism of the repeat with aging. Histopathological analysis of MJD mice at early and late stages of the disease revealed neuronal atrophy and astrogliosis in several brain regions; however, we found Selleck LY411575 no signs of microglial activation or neuroinflammatory response prior to the appearance of an overt phenotype. In our model, the appearance of MJD-like symptoms was also not associated with the presence of ataxin-3 cleavage products or intranuclear aggregates. We propose the transgenic CMVMJD94 mice as a useful model to study the early stages in the pathogenesis of MJD and to explore the molecular mechanisms involved in CAG repeat instability. (C) S63845 purchase 2010 Elsevier Inc. All rights reserved.”
“The
histone variant H3.3 is implicated in the formation and maintenance of specialized
chromatin structure in metazoan cells. H3.3-containing nucleosomes are assembled in a replication-independent manner by means of dedicated chaperone proteins. We previously identified the death domain associated protein (Daxx) and the alpha-thalassemia X-linked mental retardation protein (ATRX) as H3.3-associated proteins. Here, we report that the highly conserved N terminus of BGJ398 molecular weight Daxx interacts directly with variant-specific residues in the H3.3 core. Recombinant Daxx assembles H3.3/H4 tetramers on DNA templates, and the ATRX-Daxx complex catalyzes the deposition and remodeling of H3.3-containing nucleosomes. We find that the ATRX-Daxx complex is bound to telomeric chromatin, and that both components of this complex are required for H3.3 deposition at telomeres in murine embryonic stem cells (ESCs). These data demonstrate that Daxx functions as an H3.3-specific chaperone and facilitates the deposition of H3.3 at heterochromatin loci in the context of the ATRX-Daxx complex.”
“Objective: To estimate unbiasedly the mean and median survival time of cancer patients with incomplete follow-up. To assess the effects of informative censoring on estimates by using the crude and a bias-reducing method, based on weighted averages of the age-specific results.