Flooded rice fields are such systems where varying aerobic and anaerobic conditions impact carbon and nitrogen turnover. The lack of process understanding of these phenomena is a barrier to accurately modeling biogeochemical cycles across spatiotemporal scales [9]. In irrigated agriculture, high-resolution data on irrigation amounts and groundwater table depths and/or concentrations of solutes such as salt, total nitrogen, nitrate and ammonium provide valuable information to analyze water and fertilizer dynamics in cropping systems. Apart from simple hydrometric measurements of water level or discharge, stable water isotopes have gained importance in hydrological research in the past years. They allow the tracing of relevant water exchange and transport processes in the soil-plant-atmosphere domain [10�C12].
Automatic measurement systems increase the potential for high temporal resolution sampling at a given spatial dimension and allow inter-comparison of systems and processes without increasing the expenses for analytical equipment. For example, Butterbach-Bahl et al. developed an in situ automatic measurement system for the analysis of trace gas fluxes at multiple sites [13] and Breuer et al. further refined the system into a mobile set-up [14]. Automatic sampling systems for water, due to the cost of analytic devices and the high energy demand for water transport, are usually situated in order to perform sampling at single locations such as streams or groundwater. Alternating sampling of different sources as in the aforementioned gas sampling system is scarcely needed because water quality in most cases does not change within a few meters.
However, rice cropping systems show high variability in water and nutrient management within small distances [15], such that dense spatial water monitoring could be helpful in investigating multiple cropping systems with a single analytical system.New developments in analytical devices permit monitoring parameters at temporal resolutions recently impossible/cost prohibitive. These new systems facilitate high-resolution data acquisition without much necessary maintenance or analysis over longer periods. For example, recent developments in laser-based spectroscopy (e.g., Wavelength Scanned Cavity Ring-Down Spectrometry-WS-CRDS; Off-Axis Integrated Cavity Output Spectroscopy-OA-ICOS) allow measurements of gas isotopic signatures in situ at relatively low cost without use of chemicals.
Bai et al. used such a laser spectroscope to measure the flux of 13CO2 in up to 48 sample vessels to determine biodegradation and Drug_discovery extra carbon amendment to soils [16]. Various accessories for continuous site/specific water analysis were also developed and tested. Berman et al. modified an OA-ICOS liquid water isotope analyzer for rapid sampling and included a stream and precipitation sampling system in an auto-sampler for continuous measurements [17].